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Phase space approach to quantum dynamics 

P Lebceuf 
Division de  Physique T h h i q u e t ,  lnstitut de Physique NuclCaire, 91406 Orsay Cedex, 
France 

Received IS May 1991 

Abstract. We replace the Schradinger equation for the time propagation of states of a 
quantized 2 0  spherical phase space by the dynamics of a system of  N particles lying in 
phase space. This is done through factorization formulae of analytic function theory arising 
in coherent-state representation, the 'particles' being the zeroes of the quantum state. For 
linear Hamiltonians, like a spin in a uniform magnetic field, the motion of the particles is 
classical. However, nonlinear terms induce interactions between the particles. Their time 
propagation i s  studied and we show that, contrary to integrable systems, far chaotic maps 
they tend to fill, as their classical counterpart, the whole phase space in a uniform way. 

1. Introduction 

In classical mechanics, when an integrable system is perturbed some invariant tori are 
broken and replaced by small layers where chaotic motion takes place. This process 
is amplified as the perturbation increases, the way this transition occurs being described 
by the KAM theorem. We do not have an equivalent quantum mechanical description, 
and our understanding of the mathematical and physical implications of the system 
being classically chaotic is still rudimentary [I] .  

Recently, Lebceuf and Voros [2] proposed a representation of quantum states 
particularly well adapted to semiclassical analysis. For compact phase spaces such as 
the ZD torus or the sphere Y2,  wavefunctions in coherent-state representation exhibit 
a finite number N of zeros in phase space, and their location completely determines 
the state of the system. Moreover, they observed that the distribution of zeros for 
eigenstates of quantized systems reflects, in  the semiclassical regime h em, the nature 
of the underlying classical dynamics: it  is I D  for eigenstates of integrable systems while 
it tends to spread all over phase space in the case of a classically chaotic dynamics. 

The purpose of this paper is to develop this representation, and consider its 
dynamical aspects. Since the zeros completely determine the state of the system, we 
can interpret quantum mechanics as a (classical) system of N particles-the zeros- 
lying in phase space. The nature of their interaction and the presence of external fields 
acting on them will depend on the Hamiltonian defining the system. A stationary state 
will be associated, in this picture, with an 'equilibrium' configuration of the system of 
particles, and there will he as many of them as there are stationary states. 

However, an arbitrary initial configuration of zeros will in general evolve in time, 
in the same way that an arbitrary initial state IIL(0)) will evolve in time according to 
the Schrodinger equation. In section 3 we rewrite the Schrodinger equation in this new 
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picture, and determine the equations of motion governing the time propagation of the 
zeros. In doing that, we will clarify the nature of their interaction and the possible 
presence of external fields. For simplicity, we will restrict ourselves to the case of 
Hamiltonians written in terms of the generators of the SU(2) group-a spin system-for 
which phase space is a ZD sphere and the analytic coherent-state representation of 
Hilbert space consists of ordinary polynomials of degree 2s. Some preliminary notions 
are introduced in section 2. Finally, in section 4 we illustrate the results considering 
two examples. 

2. The SU(2) coherent-state representation 

We recall first some basic formulae arising in the context of SU(2)  coherent-state 
representation. Consider a Hamiltonian H = H ( S , ,  S,, S-, t) written in terms of the 
generators of the SU(2) group, satisfying the algebra 

[S, ; S,] = *hS* 

[S - ;  S,] = -2hS, 

Since H commutes with S2,  the Hilbert space Xis  ( 2 s +  1)-dimensional and spanned 
by the usual discrete basis 

S,lm)= mhlm) 

S21m)= s(s+ l)h21m) 

m = -s, . . . , s (2.2) 

while the phase space 9' is a Z D  sphere (the Riemann sphere). We henceforth take 

1 
[ s( s + 1 ) ] I /*  

h =  (2.3) 

so that the radius of the sphere is fixed to 1. With this convention, the phase space 
can then be labelled by polar and azimuthal angles (0, m ) .  Moreover, the semiclassical 
limit now corresponds to s + CO. 

the spin coherent states [3] 

A -  ~ l+~~~ . t : . .~ r~ l r~rn , t l t i , r ,F~ ;n tnrm.nfnns l l r , t ; r f , ,n r t innr~cn~~ . ;nP~~~rn l loh  T l l r a r , r ; r r , a , l r r , r ~ r c r r r r r ~ r r " r r " l  Yl. L , . L 1 . . . .  -". Y.'Y.,I.C.Y..".."..III~"" .I... _- I..._ ..-.. 

(2.4) 

having the norm ( z l z )  = (1  + z Z ) ~ ' .  The complex variable z spanning 9' corresponds to 
a stereographic projection of the Riemann sphere onto the plane by the north pole. 
The state 1.) is a minimum-uncertainty packet on 9' centred at z = (0, 4)  with a width 
O ( h ' / 2 )  in both directions, thus coherent states are the most 'classical' quantum states 
of angular momentum. They have the property 

0 
2 

z =cot - e" 1 z )  = eisd fi I -s)  

so that the coherent-state decomposition of a state I+ )=Z l ,  a,lm) of X 
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is a polynomial of degree 2s. It therefore has N = 2 s  complex zeros { z ~ } ~ = , , . . . , ~  on the 
sphere. We now exploit this analytic structure: the standard factorization formula 

N 

$ ( z ) = N  n (:-:*I (2.7) 

where X is a normalization constant, provides a one-to-one mapping between states 
I$) of Be and configurations { z ~ ) ~ = , , . . . , ~  of zeros in 9. The spin quantum state is 
therefore uniquely determined (up to a constant factor) by a set { z k )  of N = 2s points 
on 9. This representation was already known to Majorana [4] in 1932. As he suggested, 
we may associate with each zero zh corresponding to a point P on the Riemann sphere 
a unit vector OP, 0 being the centre of the sphere. The quantum state of the spin s 
particle (which classically corresponds to a single arrow pointing in a definite direction) 
is then 'composed' of a set of 2s unit vectors (spins) pointing in arbitrary directions 
{OPh}h-I,....N. As we show below, a coherent state is a very particular state for which 
the 2s  spins point in the same direction. 

In spite of being particularly simple for spin systems, a similar parametrization by 
the zeros can be applied to other spaces of entire functions; in particular, this has 
been done in [2] for the case of the ZD toric phase space. Moreover, an analogue 
factorization structure has also been exploited in the context of the quantum Hall 
effect [5,6] and also in ZD electrons in a periodic magnetic field [7]. 

Some relevant features of this exact parametrization are [2]: 
(i) the scalar product of two arbitrary states I$J and 

k = l  

defined, respectively, 
by the set of zeros {zeh)k=l ,..., N, {zph}h=I ,..., N is given by 

N 

($,I$@) = "J4o g m m g p m  (2.8) 
m = u  

where 

Equations (2.8) and (2.9) follow from the standard connection between the coefficients 
of a polynomial and its zeros. In terms of the latter, the normalization constant N of 
an arbitrary state I$) (cf (2.7)) is thus expressed as 

..=[j"lPm12]-'/z. 

(ii) The number N = 2s of zeros is controlled by the value of h (or vice versa, cf 

(iii) Each zero constitutes a topological defect of $ ( z ) ,  since doing a small closed 

(iv) The Husimi distribution 

(2.3)), and tends to infinity in the semiclassical limit (i.e. a thermodynamic limit). 

path around a (non-degenerate) zero changes its phase by 27r. 

(2.10) 

has the same zeros as $ ( z ) .  Thus, through its zeros, this positive-definite real function 
defined on 9 carries the full quantum information of the state of the system. 

Since (zlz") = ( 1  + Z,,Z)~' [3], a wavepacket Iz,,) has a particularly simple representa- 
tion: it is defined by placing the 2s zeros at the single point z = -z,Jlz<,l' in 9, the 
opposite point to zo on the sphere. 
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Finally, in this representation, the generators (2.1) have the following realization 
by differential operators: 

(zlS,l$)= f i (za, -s)* (z)  

(zlS+l$)= h z ( 2 s -  za,)$(z) (2.11) 

(zlS-l+)= ha,$(z). 

3. The equations of  motion 

Our purpose now is to replace the Schrodinger equation ifia,l$)= HI$) for the time 
evolution of a state I $ ( f ) )  of Z by an equiualenf equation for the time evolution of 
the zeros. 

The coherent-state representation of the Schrodinger equation can be written 

ifia,*(z, t )  = k ( z ,  J ~ ) + ( z ,  0. (3.1) 
Given the Hamiltonian H as a function of the generators S z ,  S , ,  S - ,  the symbol 

fi(z,a,) defined as ( z ( H I + ) = f i ( z , J , ) $ ( z )  is easily obtained using (2.11). We will 
assume that it has been normal ordered, i.e. all the a, have been placed to the right of 
the z variables. If at a time f the state has a zero at a certain phase space point z = z k ,  
then the condition $ ( z k  + Sz,, f + S f )  = 0 implies 

Using (3.1) we get 

where the function computed on the right-hand side must be evaluated at z = z , ( r ) ,  
the position of the zero at time f. These equations determine the dynamics of each of 
the N zeros. However, it is not fully written in terms of them, since we still use the 
function $ ( z )  to calculate ik. 

Let us now assume a polynomial expansion for the symbol k(z, a:) 
f i ( z , & )  = X J , ( z ) J :  (3.4) 

where a: means the nth derivative with respect to z and L ( z )  are arbitrary functions 
depending on the functional form of H. The higher meaningful order n in  (3.4) is 
n* = 2s since a:$(z) = 0 for n > n*. The operator a: can be interpreted as a destruction 
of one zero since it lowers the degree of the polynomial by one (further evaluation of 
the function at z =  z ,  annihilates the kth zero). Conversely, multiplication by (2-2") 

creates a zero at z = zo. Then 

But from the factorization formula (2.7) 

(3.5) 
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we obtain a formula allowing the elimination of J r (z )  in (3.3). Each term on the 
right-hand side of (3.6) can be interpreted as an  n-body interaction between the zeros. 
For an order n, the kth zero interacts simultaneously with n - 1 of the remaining N - 1 
zeros. There are 

(“3 
different possibilities to choose the n - 1 zeros, and all these possibilities are taken 
into account by the sum in (3.6). Then the coefficientf,(zk) in (3.5) can be seen as a 
position-dependent ‘charge’. However, this charge depends only on the position of the 
kth zero, and not on the position of the remaining zeros. This asymmetry reflects the 
fact that in general (3.3) cannot be written as a derivative of a potential zk = 
a,,V(z,, . . . , z N )  since a i i k  #azAz,. 

Whether or not n-body interactions exist among the zeros is determined by the 
operator (3.4), which in turn is fixed by the functional dependence of the Hamiltonian 
on the generators of the group. If this dependence is simply linear (i.e. a spin in a 
uniform magnetic field), then (2.1 1) and (3.6) show that only n = 1 terms would appear, 
and there will be no interactions between the zeros. However, the coefficient fi(zk) in 
(3.5) will provide an ‘external field’, and the motion of a given zero will depend only 
on its own position. 

The simplest non-trivial case are quadratic terms on the generators, implying 
two-body interactions 

N 1  &I = 2  1 ~, (3.7) 
zi , ( + * ) = I  z k - z ,  

This kind of term, as the general n-body interaction (3.6), produces strong short-distance 
correlations among the zeros. They are responsible in nonlinear Hamiltonians for the 
spreading of a wavepacket, since, as we already pointed out, a wavepacket 1%) = IOo, $d 
centred at (&, @,,) on 9’ is defined by placing all the zeros at a single point, the opposite 
one to zo on the sphere. For that configuration, interaction terms like (3.7) are singular 
and play a dominant role in the short-time dynamics. 

The final form for the equations of motion is 

The equilibrium configurations for the zeros-the eigenstates-will be determined 
by the conditions 

i, = o  k = 1, . . . , N .  (3.9) 

This will be in general an algebraic system of N = 2s nonlinear coupled equations for 
the 2s variables { z k } .  

4. Two examples 

We now consider two specific examples. If the Hamiltonian H does not depend on 
time, then we have a I D  integrable system. In  order to have a classically chaotic 
dynamics, we must consider time-dependent Hamiltonians. The simplest case is a 
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periodic sequence of delta pulses (kicks). Then stroboscopic observation of the system 
leads, at the classical level, to a symplectic map of P? onto itself. Quantum mechanically, 
in the Schrodinger picture the one-step map is realized by a unitary operator U such 
that a state I$) of 2t is transformed, after a period T of the pulse, onto I$)'"+"= UI$)'"' 
[SI. Our quantum approach is different, and resembling much more the classical picture. 
From (3.8) we will construct a one-step map for the time evolution of the zeros, and 
study their phase space motion. 

The first example deals with a system which, in spite of being periodically kicked, 
is classically integrable. The second has a regular to chaotic transition at the classical 
level. 

4.1. The linear case 

Consider a simple linear Hamiltonian on the generators 
m 

H = p S , + p S ,  t i ( r - n )  (4.1) 
n = - m  

which can be interpreted physically as a spin s particle subjected to a constant magnetic 
field on the z direction plus a periodically ( T =  1) pulsed magnetic field applied in 
the x direction. 

The classical equations of motion for the (normalized) spin vector S =  
(sin e cos 4, sin e sin 4, cos 0) 

d S  
- = s h (-$) 
df (4.2) 

integrated over a period T = 1 give the following discrete map of the sphere onto itself 

s'"+')= R , ( ~ ) R , (  p ) s ( " ) .  (4.3) 

Its physical interpretation is as follows: between two pulses, the constant magnetic 
field in the z direction produces a uniform precession of the spin by an angle p around 
the z axis. Then the magnetic field acts in the x direction, producing a sudden rotation 
of the spin by an angle p around the x axis. The effective motion is just a rotation 
around a third axis e, specified by the values of the parameters p and p .  

We now consider the quantum dynamics, i.e. a map for the zeros. Using (2.11), 
the Hamiltonian (4.1) gives, with S, = ( S + + S _ ) / 2 ,  

m 

(4.4) 
fw 
2 "=-m 

f i ( z ,  J,) = hp(zJ, -s)--[(z2-1)J,+2sz] S ( f -  n )  

so that (3.8) become 
m 

k = 1,.  . . , N .  (4.5) CI 
2 o=-m 

ik=ipzx-i-(z:- l )  t i ( r - n )  

As mentioned before, due to the linearity of the Hamiltonian on the generators of the 
group we get a velocity ik for the kth zero that depends on its position but nor on the 
position of the other zeros. 

These equations are easily integrated to obtain the one-step map. We denote f '" '  

the time just after the nth kick, and ry '  the time just before the ( n + l ) t h  kick. In  the 
interval f'"'SfS ry' between two kicks, the position zp' transforms to zp>= 
&"' exp(ip), i.e. the kth zero just rotates by p around the z axis, exactly as the classical 
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spin. Then integrating (4.5) during the interval f y J s  f s f ' " + "  on which the kick acts 
yields the total map 

which is just, in stereographic projection, a rotation by p around x of the kth zero 
from its position just before the kick z = zy:. We have thus arrived at the conclusion 
thnt !he motiar! of ench kdiaidua! zero cnixcide: -with !he motlox of n c!assicz! spin 
s particle having the same initial conditions. The quantum dynamics can then be 
viewed, in this simple case, as a collection of N non-intereacting point particles in  
phase space, all of them undergoing a classical motion [4,9]. 

The stationary condition zy"' = z k  lo' applied to (4.6) determines the two points 
arising from the intersection of the effective axis of rotation e, with the sphere, for all 
~~~ k These .~~... SIP nhvinxsly .. . ~. invariant under the dynamics. The zeros being indi~tinguishahle~ 
we have N+1 = 2 s + l  different possibilities for the location of the N zeros on the 
two stable points. 

The coincidence of the quantum motion of the zeros with the classical one is no! 
just due to the integrability of the system, but to the linear dependence of H on the 
generators. For nonlinear integrable systems, they will be different. Analogously, in 
the latter case the stationary distributions of zeros will not generically be single points 
but will tend, in the semiclassical regime, to form lines with a typical distance of order 
h between the zeros [2]. 

4.2. A quadratic kicked spin 

F e  new consider the Hlmi!?oniln 
m 

(4.7) H = - S t + p S ,  P s ( 1 - n )  
2 n=-m 

which has a nonlinear dependence on the generators of the group. This kind of 
peridoically kicked spin system has been considered by several authors [ 10,111. From 
(4.2) we now obtain the ciassicai map 

SI"+"= R,(p)Rl(pS)"')S'"' (4.8) 

whose structure is similar to the linear case (4.3). However, the rotation around the z 
axis is now done by an angle proportional to the z-component of the spin S. At p = 0, 
the classical motion is integrable (a simple precession around the z axis with energy 
E = p / 2  cosi e) .  As p increases, the system undergoes a regular-to-chaotic transition. 
In figure 1 we show this transition for p = 4w and OS p s  I .  The variables used to label 
9' are (4, cos e), which are canonical conjugates. 

Quantum mechanically the map is realized by the unitary transformation I*) '"+' '  = 
UIfi)'"', U = exp(-ips,/ h )  exp(-ipSi/(2h)). The corresponding equations of motion 
for the zeros, obtained from (3.8), are 

k = 1, .  . . , N .  (4.9) 
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(a) 

Figure 1. The classical map (4.8) for p = 4 *  and ( a )  p=O, ( b )  f i = O . I ,  ( c )  f i = O . 2 5 ,  ( d )  
p = l .  

The kick term is the same as in (4.1). However, the quadratic dependence of the 
Hamiltonian on S, induces two-body interactions between the zeros, and their motion 
is now coupled. 

As before, to obtain the one-step map we must integrate (4.9) between t ' " ' s I s  
l l o + l l  . The motion between kicks 

corresponds classically to a uniform precession of the spin around the z axis provided 
by the term Ss in (4.7). The quantum motion, described by (4.10), is much more 
complicated. We were not able to solve these equations analytically to obtain an explicit 
form for the map between two kicks, except for the simple case s = 1 (two zeros), 
where we get for the position of the two zeros just before the ( n + l ) t h  kick 

z\:;+= ( ~ ' " 1  e ' " h / / ' - t [ ( ~ ' " l ) 2 + ( C l " l ) 2 ( e ~ p h _ 1 ) ~ 1 / ~ ) , ~  

C'"' and RI"' being the 'centre of mass' and 'relative' coordinates at time 1 ' " ' .  

For an arbitrary s > 1, (4.10) were solved numerically. We denote the change in 
~ l " ' = z : " l +  z ,  ( " 1  and RI"'= z:"'-z:"', respectively. 

the position of the kth zero during that period of time by z p ' +  z?:. 
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The kick is then easy to integrate. It is just a rotation of each zero around the x 
axis by an angle p (cf (4.6)). The total map can thus be written 

(4.11) 

Stationary configurations of zeros of this kicked spin system have been shown in [2] 
as a function' of the parameter p. We now show some global properties of the map 
(4.11) as the parameter p changes from 0 to 1. 

Since we want to emphasize the classical underlying structures, we have chosen 
large values of s and as initial configuration for the zeros a coherent-state wavepacket 
Izo) peaked at some point zo of 9. The zeros are then concentrated at the opposite 
point (&, 0,) on the sphere. I n  practice, to avoid singularities in (4.10), we have 
placed the zeros over a small circle centred at (&, e*). Other initial conditions, like 
a uniform distribiution of zeros over 9, wiii mix severai ciassicaiiy diRerent structures, 
unless the system is completely chaotic. As in classical mechanics, we follow the 
trajectory of the zeros'and we plot the successive positions { z p ' ) ,  n = 1,2,. . . . The 
result obtained in the asymptotic limit t = n -fa gives an idea of the regions of phase 
space explored by the quantum state during its time evolution, and of the way this 
exploration is done. Although in a strict sense the distribution (2.10) cannot b e  
interpreted as a phase space probability density since the coherent states Ir) do not 
form an orthogonal set, in this 'complementary' picture of quantum mechanics regions 
of high density of zeros in 9 are regions where the system has a low 'probability' of 
being found there. This probabilistic interpretation becomes more and more correct 
as we approach the classical limit s + m where coherent states become orthogonal. 

Figure 2 ( a )  shows the regions of phase space explored by the zeros in the case 
, . -n q C - m  .." t- II timp ,--la I,. " 1 1  *ha fi ".,_ ~" et.- :..:+;-a ,.,.-.c -..-" A,.- -c p -" YI." L O  - "Y Y)i' I" Y L I I I L C  I - Id". '11 LI.1 L l l b  "SU1L", L 1 1 L  LLIILILILI C U 1 L ' L ~ Y L L L 1 U "  U, 

zeros is indicated by a star. The zeros describe in this case a very regular pattern, a 
sequence of horizontal lines (like the classical orbits). A vertical alignment also exists, 
but it occurs only for special values of p ,  such as 4 m  This is also true for the small 
diagonal bands over which the zeros do not enter, as well as the vertical line at 4 = &.  
For other values of p the zeros tend to fill the horizontal lines uniformly. The total 

Figure2. Thequantummap (4 .11) forp=4rr ,  N = Z s = 6 O a n d  ((11 p = O . ( b )  + = l , A l l  
the zeros are at ! = 0 concentraled on the star, defining thus as initial state a coherent-state 
wavepacket. 
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number of lines is of order 2s,  i.e. one line per zero. The same global structure as in 
figure 2 ( a )  was observed for other initial points (&,cos 0*), 

The motion of the zeros is completely different when the underlying classical 
dynamics is fully chaotic. In figure 2 ( b )  we show the same plot as  in figure 2 ( a ) ,  with 
the same initial condition, but for p =  I (cf. figure I ( d ) ) .  Here the zeros tend to fill 
the whole phase space in an apparently disordered and uniform way, and the overall 
picture obtained quite resembles the classical one (the total number of points is the 
same in both figures). The question of the ergodicity of this distribution, i.e. whether 
or not the zeros in their time evolution cover the whole phase space is an important 
question which, however, cannot be answered by numerical methods. The latter is also 
true classically. For other positions of the initial coherent-state packet lzo) the same 
pattern of figure 2 ( b )  was observed, except when the wavepacket was concentrated 
over an unstable periodic orbit, like the period-one orbit located at (4, cos 0) = (rr, 0). 
In that case we have observed more structure in the covering of !? by the zeros, and 
the appearance of certain regions where the zeros apparently do  not enter. 

Finally, figures 3 ( a )  and ( b )  show the time evolution for two different initial 
conditions in the case of a mixed classical dynamics, p = 0.25. In  the first case (figure 
3 ( a ) ) ,  we have concentrated the zeros at (&, cos 0,) = (0,O) so that the wavepacket 
is peaked on the regular region surrounding (4, cos 0) = (rr, 0). The fact that the zeros 
in-their time evolution do not enter that classically regular region indicates that the 
quantum state remains concentrated there, and does not spread all over 9. However, 
the motion of the zeros does not present a regular pattern, as in figure 2 ( a ) .  The 
appearance of regions of high density of zeros (like those close to the north and south 
poles) suggests simple coherent effects in the time propagation of the quantum state. 
On the other hand, figure 3 ( b )  corresponds to a wavepacket initially centred on a 
chaotic region of 9’. Now the zeros tend to cover the whole phase space. This is not 
done in a uniform way, and a lot of structure is observed. The regions of high density 
of zeros observed where regular invariant’tori exist (cf figure l ( c ) )  are easy to 
understand, since the system has a low probability of entering that region, and remains 
wrapped around in the chaotic domain. However, the zeros also tend to cover the 
chaotic regions of 9’ where the wavefuntion spends most of its time. This makes a 

1 0  1 0 

Figure 3. The same as in l i p r e  2 but for 
for the initial wavepacket. 

=0.25 and two ditferent positions ( 0 1  and ( b )  
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clear difference between states of mixed systems propagating in chaotic regions of 
phase space, like the present one, and those propagating in regular regions, like that 
of figure 3 ( a ) .  

5. Conclusion 

(i) The covering of phase space by the zeros as some boundary conditions are 
changed was recently exploited to interpret the localization properties of eigenstates 
of quantized classically chaotic maps [ 121. In that context, zeros of delocalized states 
(having a Chern index different from zero) were shown to cover the whole phase space. 
Semiclassically, those states are associated with chaotic regions of phase space. In 
contrast, zeros of eigenstates associated with regular regions (localized states having 
zero Chern index) do not cover the entire phase space. The present study seems to 
confirm, but now on dynamical grounds, such a scheme. 

(ii) We have chosen the case of the SU(2) group for technical simplicity, but other 
groups can be treated in the same way. Equation (3.3) is general, but the factorization 
formula (2.7) and the differential representation of generators are obviously not, so 
that the final form of the equations of motion will depend on the group. 

(iii) In the semiclassical limit, and at least for sufficiently short times, the phase 
space location of zeros at time 1 = n can be interpreted as the interference of different 
branches of the classical action (a sort of anti-Stokes line, see [2] for details). When 
the initial state is, as in section 4.2, a coherent-state wavepacket lzo), what we have 
studied are just the zeros of the propagator in the coherent-state representation (21 U"lz,) 
a s a  function oftime t=n,s ince I#) ' " )= U " I z o ) ~ # ( z , t = n ) = { z I U " I z o ) .  Adachi [13] 
has interpreted the location of zeros of ( z l  U"/z,) in terms of 'folding' of wavefunctions 
in phase space, the basic mechanism, together with 'stretching', generating a chaotic 
dynamics at the classical level. More recently D'Ariano er a/  [ 141 have also studied, 
in a kicked spin model, the short-time propagation of zeros of initial coherent-state 
wave packets centred at unstable periodic orbits. 

(iv) For multidimensional systems, the basic structure (2.7) is lost since we now 
run into the theory of analytic functions of several variables. I sketch here a possible 
way to overcome ihe probiem by considering a quantum anaiogue of the ciassicai 
Poincart section construction. Consider for definiteness a system of two coupled spins 
s, and s2. Then the analytic coherent-state representation [ z , z2 )  = IzJOlz,) of any vector 
of Hilbert space 

T I  

#(zl, z* )= (z , z2 (# )=  1 il cm,mlz;'+mlz;2+m: (5.1) 

is an analytic function of two complex variables. Instead of the full function # ( z , ,  z 2 )  
defined on a 4~ space, let us consider 

ml  = - s ,  mi=-'2 

There are (2s,+ 1) of such functions labelled by the index m,,  and each of them has 
2s, zeros on the plane spanned by z , .  The set of (2s2+ 1 )  x 2s, zeros clearly completely 
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determines (up to proportionality) the quantum state. Moreover, Snp2(z , )  can be con- 
sidered as a quantum 'Poincari section' of the 40 # ( z , ,  z2)  through the section plane 
m, = constant. The classical analogue of this procedure is to fix the projection of the 
spin s, over the vertical axis, i.e. the plane cos O2 = m2/s2 = constant. 4, being deter- 
mined by energy conservation, we get a surface of section in the variables ((+, , 0, ) ,  
to be compared with S,,,Jz,). Equation (5.2) is the coherent-state representation of a 
I D  system (cf (2.6)). However, an eventual transition to chaos will not be produced 
here via a time dependence on H but through the coupling to the other spin. 
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